3.2.31 \(\int \frac {\csc (e+f x)}{(a+b \tan ^2(e+f x))^{3/2}} \, dx\) [131]

Optimal. Leaf size=84 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{a^{3/2} f}-\frac {b \sec (e+f x)}{a (a-b) f \sqrt {a-b+b \sec ^2(e+f x)}} \]

[Out]

-arctanh(sec(f*x+e)*a^(1/2)/(a-b+b*sec(f*x+e)^2)^(1/2))/a^(3/2)/f-b*sec(f*x+e)/a/(a-b)/f/(a-b+b*sec(f*x+e)^2)^
(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3745, 390, 385, 213} \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{a^{3/2} f}-\frac {b \sec (e+f x)}{a f (a-b) \sqrt {a+b \sec ^2(e+f x)-b}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]/(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

-(ArcTanh[(Sqrt[a]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]]/(a^(3/2)*f)) - (b*Sec[e + f*x])/(a*(a - b)*f*
Sqrt[a - b + b*Sec[e + f*x]^2])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 390

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^n)^(p + 1)*
((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - a*d))), x] + Dist[(b*c + n*(p + 1)*(b*c - a*d))/(a*n*(p + 1)*(b*c - a
*d)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, q}, x] && NeQ[b*c - a*d, 0] && Eq
Q[n*(p + q + 2) + 1, 0] && (LtQ[p, -1] ||  !LtQ[q, -1]) && NeQ[p, -1]

Rule 3745

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sec[e + f*x], x]}, Dist[1/(f*ff^m), Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a - b + b*ff^2*x^2)^p/x^(m
 + 1)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {\csc (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx &=\frac {\text {Subst}\left (\int \frac {1}{\left (-1+x^2\right ) \left (a-b+b x^2\right )^{3/2}} \, dx,x,\sec (e+f x)\right )}{f}\\ &=-\frac {b \sec (e+f x)}{a (a-b) f \sqrt {a-b+b \sec ^2(e+f x)}}+\frac {\text {Subst}\left (\int \frac {1}{\left (-1+x^2\right ) \sqrt {a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{a f}\\ &=-\frac {b \sec (e+f x)}{a (a-b) f \sqrt {a-b+b \sec ^2(e+f x)}}+\frac {\text {Subst}\left (\int \frac {1}{-1+a x^2} \, dx,x,\frac {\sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{a f}\\ &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{a^{3/2} f}-\frac {b \sec (e+f x)}{a (a-b) f \sqrt {a-b+b \sec ^2(e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(1007\) vs. \(2(84)=168\).
time = 6.74, size = 1007, normalized size = 11.99 \begin {gather*} -\frac {2 b \cos (e+f x) \sqrt {\frac {a+b+a \cos (2 (e+f x))-b \cos (2 (e+f x))}{1+\cos (2 (e+f x))}}}{a (a-b) f (a+b+a \cos (2 (e+f x))-b \cos (2 (e+f x)))}+\frac {\frac {(1+\cos (e+f x)) \sqrt {\frac {1+\cos (2 (e+f x))}{(1+\cos (e+f x))^2}} \sqrt {\frac {a+b+(a-b) \cos (2 (e+f x))}{1+\cos (2 (e+f x))}} \left (4 \sqrt {a} \tanh ^{-1}\left (\frac {-\sqrt {a} \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )+\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{2 \sqrt {b}}\right )-\sqrt {b} \left (2 \tanh ^{-1}\left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-\frac {\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{\sqrt {a}}\right )+\log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )\right )\right ) \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \left (1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {\frac {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}{\left (1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}}{4 \sqrt {a} \sqrt {b} \sqrt {a+b+(a-b) \cos (2 (e+f x))} \sqrt {\left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}-\frac {(1+\cos (e+f x)) \sqrt {\frac {1+\cos (2 (e+f x))}{(1+\cos (e+f x))^2}} \sqrt {\frac {a+b+(a-b) \cos (2 (e+f x))}{1+\cos (2 (e+f x))}} \left (4 \sqrt {a} \tanh ^{-1}\left (\frac {-\sqrt {a} \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )+\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{2 \sqrt {b}}\right )+\sqrt {b} \left (2 \tanh ^{-1}\left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-\frac {\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{\sqrt {a}}\right )+\log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )\right )\right ) \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \left (1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {\frac {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}{\left (1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}}{4 \sqrt {a} \sqrt {b} \sqrt {a+b+(a-b) \cos (2 (e+f x))} \sqrt {\left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}}{a f} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Csc[e + f*x]/(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

(-2*b*Cos[e + f*x]*Sqrt[(a + b + a*Cos[2*(e + f*x)] - b*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])])/(a*(a - b)*
f*(a + b + a*Cos[2*(e + f*x)] - b*Cos[2*(e + f*x)])) + (((1 + Cos[e + f*x])*Sqrt[(1 + Cos[2*(e + f*x)])/(1 + C
os[e + f*x])^2]*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*(4*Sqrt[a]*ArcTanh[(-(Sqrt[a]*
(-1 + Tan[(e + f*x)/2]^2)) + Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2])/(2*Sqrt[b])] - Sqrt
[b]*(2*ArcTanh[Tan[(e + f*x)/2]^2 - Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]/Sqrt[a]] + Lo
g[a - 2*b - a*Tan[(e + f*x)/2]^2 + Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]]))*(-1
 + Tan[(e + f*x)/2]^2)*(1 + Tan[(e + f*x)/2]^2)*Sqrt[(4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2)/
(1 + Tan[(e + f*x)/2]^2)^2])/(4*Sqrt[a]*Sqrt[b]*Sqrt[a + b + (a - b)*Cos[2*(e + f*x)]]*Sqrt[(-1 + Tan[(e + f*x
)/2]^2)^2]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]) - ((1 + Cos[e + f*x])*Sqrt[(1 + Cos[2
*(e + f*x)])/(1 + Cos[e + f*x])^2]*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*(4*Sqrt[a]*
ArcTanh[(-(Sqrt[a]*(-1 + Tan[(e + f*x)/2]^2)) + Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2])/
(2*Sqrt[b])] + Sqrt[b]*(2*ArcTanh[Tan[(e + f*x)/2]^2 - Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^
2)^2]/Sqrt[a]] + Log[a - 2*b - a*Tan[(e + f*x)/2]^2 + Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f
*x)/2]^2)^2]]))*(-1 + Tan[(e + f*x)/2]^2)*(1 + Tan[(e + f*x)/2]^2)*Sqrt[(4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[
(e + f*x)/2]^2)^2)/(1 + Tan[(e + f*x)/2]^2)^2])/(4*Sqrt[a]*Sqrt[b]*Sqrt[a + b + (a - b)*Cos[2*(e + f*x)]]*Sqrt
[(-1 + Tan[(e + f*x)/2]^2)^2]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]))/(a*f)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(3490\) vs. \(2(76)=152\).
time = 0.36, size = 3491, normalized size = 41.56

method result size
default \(\text {Expression too large to display}\) \(3491\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)/(a+b*tan(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/f*(ln(-2*(cos(f*x+e)-1)*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)-co
s(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2/a^(
1/2))*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)^3*a^3-2*ln(-2*(cos(f*x+e)-1)*(cos(
f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*
x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2/a^(1/2))*((a*cos(f*x+e)^2-cos(f*x+e)^
2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)^3*a^2*b+ln(-2*(cos(f*x+e)-1)*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-co
s(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+
e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2/a^(1/2))*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*cos
(f*x+e)^3*a*b^2+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*ln(-4*(cos(f*x+e)*a^(1/2)*((a*cos(f
*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a
^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)-1))*cos(f*x+e)^3*a^3-2*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos
(f*x+e)+1)^2)^(1/2)*ln(-4*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)+((a*c
os(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)-1))*cos
(f*x+e)^3*a^2*b+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*ln(-4*(cos(f*x+e)*a^(1/2)*((a*cos(f
*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a
^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)-1))*cos(f*x+e)^3*a*b^2+2*cos(f*x+e)^2*a^(5/2)*b+ln(-2*(cos(f*x
+e)-1)*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e
)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2/a^(1/2))*((a*cos(f*x+e)^2
-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)^2*a^3-2*ln(-2*(cos(f*x+e)-1)*(cos(f*x+e)*a^(1/2)*((a*cos
(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+
b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2/a^(1/2))*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^
2)^(1/2)*cos(f*x+e)^2*a^2*b+ln(-2*(cos(f*x+e)-1)*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f
*x+e)+1)^2)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)
+b)/sin(f*x+e)^2/a^(1/2))*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)^2*a*b^2+((a*co
s(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*ln(-4*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b
+b)/(cos(f*x+e)+1)^2)^(1/2)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+cos(f*x+e)*a-b*
cos(f*x+e)+b)/(cos(f*x+e)-1))*cos(f*x+e)^2*a^3-2*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*ln
(-4*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)+((a*cos(f*x+e)^2-cos(f*x+e)
^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)-1))*cos(f*x+e)^2*a^2*b+((a*co
s(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*ln(-4*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b
+b)/(cos(f*x+e)+1)^2)^(1/2)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+cos(f*x+e)*a-b*
cos(f*x+e)+b)/(cos(f*x+e)-1))*cos(f*x+e)^2*a*b^2-2*cos(f*x+e)^2*a^(3/2)*b^2+ln(-2*(cos(f*x+e)-1)*(cos(f*x+e)*a
^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-c
os(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2/a^(1/2))*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(
cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)*a^2*b-ln(-2*(cos(f*x+e)-1)*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2
*b+b)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(
1/2)*a^(1/2)+b)/sin(f*x+e)^2/a^(1/2))*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)*a*
b^2+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*ln(-4*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(
f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+cos(f
*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)-1))*cos(f*x+e)*a^2*b-((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^
(1/2)*ln(-4*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)+((a*cos(f*x+e)^2-co
s(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)-1))*cos(f*x+e)*a*b^2+
ln(-2*(cos(f*x+e)-1)*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)
*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2/a^(1/2))*((
a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^2*b-ln(-2*(cos(f*x+e)-1)*(cos(f*x+e)*a^(1/2)*((a*co
s(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^...

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(csc(f*x + e)/(b*tan(f*x + e)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 172 vs. \(2 (80) = 160\).
time = 3.66, size = 373, normalized size = 4.44 \begin {gather*} \left [-\frac {2 \, a b \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) - {\left ({\left (a^{2} - 2 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{2} + a b - b^{2}\right )} \sqrt {a} \log \left (-\frac {2 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{2} - 2 \, \sqrt {a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right )}{2 \, {\left ({\left (a^{4} - 2 \, a^{3} b + a^{2} b^{2}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{3} b - a^{2} b^{2}\right )} f\right )}}, -\frac {a b \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) - {\left ({\left (a^{2} - 2 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{2} + a b - b^{2}\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a}\right )}{{\left (a^{4} - 2 \, a^{3} b + a^{2} b^{2}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{3} b - a^{2} b^{2}\right )} f}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[-1/2*(2*a*b*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) - ((a^2 - 2*a*b + b^2)*cos(f*x + e
)^2 + a*b - b^2)*sqrt(a)*log(-2*((a - b)*cos(f*x + e)^2 - 2*sqrt(a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x
+ e)^2)*cos(f*x + e) + a + b)/(cos(f*x + e)^2 - 1)))/((a^4 - 2*a^3*b + a^2*b^2)*f*cos(f*x + e)^2 + (a^3*b - a^
2*b^2)*f), -(a*b*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) - ((a^2 - 2*a*b + b^2)*cos(f*x
 + e)^2 + a*b - b^2)*sqrt(-a)*arctan(sqrt(-a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/a
))/((a^4 - 2*a^3*b + a^2*b^2)*f*cos(f*x + e)^2 + (a^3*b - a^2*b^2)*f)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\csc {\left (e + f x \right )}}{\left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(a+b*tan(f*x+e)**2)**(3/2),x)

[Out]

Integral(csc(e + f*x)/(a + b*tan(e + f*x)**2)**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(t_

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sin \left (e+f\,x\right )\,{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(sin(e + f*x)*(a + b*tan(e + f*x)^2)^(3/2)),x)

[Out]

int(1/(sin(e + f*x)*(a + b*tan(e + f*x)^2)^(3/2)), x)

________________________________________________________________________________________